Patient samples were provided by the International ML-DS Study Group.

Samples provided to the Weatherall Institute of Molecular Medicine, Oxford by:

- D. Webb, P. Ancliff, Department of Haematology and Oncology, Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, United Kingdom
- O’Marcaigh, O. Smith, C. Ryan, Department of Haematology, Our Lady’s Hospital, Crumlin, Dublin 12, Ireland
- H. Hasle, Department of Pediatrics, Aarhus University Hospital Skejby, Denmark
- J. L. Fuster Soler, Unidad de Oncohematologia Pediatrica, Hospital Universitario Virgen de la Arrixaca, Madrid, Spain
- J. Abrahamsson, Department of Pediatric Hematology and Oncology, The Queen Silvia Children’s Hospital, Sahlgrenskas University Hospital, Gothenburg, Sweden
- J. Arvidson Department of Women’s and Children’s Health, University Children’s Hospital, Uppsalal
- M. Velangi, S. Lawson, Department of Hematology, Birmingham Children’s Hospital, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom
- H. Ariffin, Pediatric Hematology-Oncology Unit, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
- D. Lancaster, A. Morris, The Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, United Kingdom
- M. Madi, Leicester Royal Infirmary, Infirmary Square, Leicester, Leicestershire, LE1 5WW, United Kingdom
- M. Cummins, J. Moppett, Bristol Royal Hospital for Children, Paul O’Gorman Building, Upper Maudlin Street, Bristol, BS2 8BJ, United Kingdom
- Gibson, Royal Hospital for Sick Children, Yorkhill, Glasgow, GS 8SJ, United Kingdom
- Vora, Department of Paediatric Haematology, Sheffield Children's Hospital, Sheffield, S10 2TH, United Kingdom
- K. Jahnukainen, M. Korhonen, J. Kanerva, Hospital for Children and Adolescents, Helsinki University Central Hospital, FIN-00290 Helsinki, Finland
- M. Jenney, Children's Hospital for Wales, Heath Park, Cardiff CF14 4XW, United Kingdom
- D.M. Wojcik, Haukeland University Hospital, Jonas Liesvei 65, N-5021 Bergen, Norway
- Zeller, Pediatric Department, National Hospital of Norway, NO-0027, Oslo, Norway
- Bekassy, Department of Pediatrics, University Hospital of Lund, SE-221 85 Lund, Sweden
- Thomas, Haematology/Oncology Department, Royal Hospital for Sick Children, Edinburgh, United Kingdom
- J. Malmros, M. Heyman, Childhood Cancer Centre, Karolinska University Hospital, Stockholm, Sweden
- T. Otunla, St. Peter’s Hospital, Guildford Road, Chertsey, Surrey, KT16 0PZ, United Kingdom
- J. Wimperis, Norfolk and Norwich University Hospital, Colney Lane, Norwich, NR4 7UY, United Kingdom
- S. Redpath, Barts and the London Children’s Hospital, St. Bartholomew’s Hospital, London EC1A 7BE, United Kingdom
• R. Wynn, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, United Kingdom
• H. Richmond, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford. OX3 9DS, United Kingdom
• G. H. Hall, Paediatric Haematology/Oncology Unit, Oxford Children’s Hospital, John Radcliffe Hospital, Oxford, OX3 9DU

Samples provided to the AML-BFM Study Group, Hannover, Germany by:

- Gnekow, I. Kinderklinik des KZVA, Augsburg
- G. Henze, Charité Berlin
- N. Jorch, Ev. Krankenhaus Bielefeld
- G. Fleischhack, Universitäts-Kinderklinik, Bonn
- Hofmann, Klinikum Chemnitz
- Th. Wiesel, Vestische Kinderklinik, Datteln
- D. Schneider Kinderklinik der Städt. Kliniken, Dortmund
- M. Suttrop, Universitäts-Kinderklinik Carl-Gustav-Carus, Dresden
- Borkhardt, Universitäts-Kinderklinik, Düsseldorf
- Sauerbrey, Helios Klinikum Erfurt GmbH, Erfurt
- Th. Klingebiel, Klinikum d. J. W. Goethe-Universität, Frankfurt
- C.M. Niemeyer, Universitäts-Kinderklinik Freiburg
- R. Schneppenheim, Universitätsklinikum Hamburg-Eppendorf, Hamburg
- E. Kulozik, Universitäts-Kinderklinik, Heidelberg
- N. Graf, Universitäts-Kinderklinik, Homburg/Saar
- M. Schrappe, Universitätsklinikum Schleswig-Holstein, M. Dürken, Universitäts-Kinderklinik, Mannheim
- Schmid, Kinderklinik im Dr v. Haunerschen Kinderspital Mu`nchen
- St Burdach, A. Wawer, Kinderklinik Schwabing, München
- H. Jürgens, Universitäts-Kinderklinik, Münster
- W. Scheurlen, Cnopf’sche Kinderklinik, Nürnberg, H. Mülle, Klinikum Oldenburg, Oldenburg
- C.F. Classen, Universitäts-Kinderklinik, Rostock
- H. Reinhard, Asklepios Klinik St. Augustin
- St. Bielack, Olgahospital, Stuttgart
- R. Handgretinger, Universitäts-Kinderklinik Tübingen
- K.-M. Debatin, Universitäts-Kinderklinik, Ulm
- M. Albani/G. Beron, Dr Horst-Schmidt-Kinderklinik, Wiesbaden
PCR’s analysis

Some or all of the following primers and conditions were used: exon 1 forward 5'-CAGGAAGACGCACATACACAGGA-3' and reverse 5'-GATGGAGCTAGGGTTTGGCAGAT-3' (amplicon 965 base pairs (bp)), annealing temperature 61°C; exon 2 forward 5'-AAAGGAAGGAGGAGAGCAG-3' and reverse 5'-AAGCTTCCAGCCATTCTGTA-3' (amplicon 432 bp), annealing temperature 60°C; Exon 2 forward 5'-GGATTTCTGTGTCTGAGG-3' and reverse 5'-CCAACAGCACCTCAGCCA-3' (amplicon 327 bp), annealing temperature 55°C; Exon 2 forward 5'-GATGGGAGAGGAGATAAGGT-3' and reverse 5'-GGCAACCACCACACTCTCCAGT-3' (amplicon 1103 bp), annealing temperature 61°C; exon 3.1 forward 5'GGAACTTTGGCCACCACATGTTGG-3' and reverse 5'-AGCCGTCTGTCTTCAAAAGTCTC-3' (amplicon 310bp), annealing temperature 58°C; exon 3.2 forward 5'-CTGGATGGAAAAGGCAGCACCA-3' and reverse 5'-GAGCTTAGCCTCAGCTCAGTTTAC-3' (amplicon 304 bp), annealing temperature 58°C.

PCR conditions were; 5–10 minutes at 95°C, 35 cycles of 1 minute at 95°C, 1 minute at the annealing temperature given and 1 minute at 72°C. After the last cycle, an additional step of 5–10 minutes at 72°C was performed. PCR products were verified by gel electrophoresis.

Sorting of blasts

Myeloid blasts in TMD and ML-DS show a unique immunophenotype {Langebrake, 2005 #3024} with asynchronous antigen expression of stem/progenitor cells (CD34/CD117), megakaryocytes (CD36, CD41, CD42b, CD61), mature myeloid cells (CD13/CD33) and lineage aberrant antigens (CD7/CD56). For samples with low blast percentage, cells were first gated on the blast gate. Then within the blast gate, a combination of at least three positive antigens (CD34 or CD117/CD13 or CD33/CD7 or CD56) and two negative antigens (CD3 and CD2) was used according to diagnostic immunophenotype.

The lower rate of detection is based on percentage of blasts in the diagnostic sample defined by morphology (down to 5%) and/or immunophenotype (down to 0.1% of blasts in the blast gate on FACS analysis). The lower limit for the detection of mutations was set at 0.5% as this was the lowest blast count for which we could detect a *GATA1* mutation.

Allelic discrimination assay

Two TaqMan MGB probes were designed using Primer Express Software (Firma Applied Biosystems), one specific for the *GATA1* wildtype (allele 1) and one specific for *GATA1s* mutation (allele 2). Each of the two probes was labeled with a different fluorescent dye (FAM and VIC dye). For quantitation a standard curve was set up by 10-fold Serial Dilution Series from the patients initial DNA (dilution steps: min 0.5). Assay sensitivity was 10^{-5}; quantitative range 10^{-4}; slope of standard curves was between -3.2 and -3.6. Human embryonic kidney cell line 293T was used as a control.
<table>
<thead>
<tr>
<th>GATA1 mutation characterised</th>
<th>TMD n=134</th>
<th>ML-DS n=103</th>
<th>Total n=237</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of 1st Met</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>0.7011</td>
</tr>
<tr>
<td>Splicing errors</td>
<td>14</td>
<td>13</td>
<td>27</td>
<td>0.6741</td>
</tr>
<tr>
<td>PTC 1–3'</td>
<td>37</td>
<td>21</td>
<td>58</td>
<td>0.3388</td>
</tr>
<tr>
<td>Total 'High expression'*</td>
<td>56</td>
<td>36</td>
<td>92</td>
<td>0.5534</td>
</tr>
<tr>
<td>PTC1–5'</td>
<td>50</td>
<td>42</td>
<td>92</td>
<td>0.3021</td>
</tr>
<tr>
<td>PTC type 2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0.2667</td>
</tr>
<tr>
<td>Total 'Low expression'*</td>
<td>53</td>
<td>42</td>
<td>95</td>
<td>0.5534</td>
</tr>
<tr>
<td>Unknown</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>0.3363</td>
</tr>
</tbody>
</table>

Table S1. Analysis of GATA1 mutation types in TMD and ML-DS patients and expected effect on GATA1s expression levels
Patient samples were divided into subgroups based on the type of GATA1 mutation present, according to the classification detailed in Kanezaki et al. Statistical analysis was performed using the Fisher’s exact test.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>T21</th>
<th>Complex cyto.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML-DS</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>CCR</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>7</td>
</tr>
</tbody>
</table>

Table S2. Analysis of correlation between cytogenetics and clinical outcome in TMD patients
Patients were divided into those that presented with T21 as their only cytogenic abnormality and those that had more complex cytogenetics, then separated according to clinical outcome. CCR denotes complete clinical remission. Statistical analysis was performed using Fisher’s exact test.
Figure S1. GATA1s expression in TMD and ML-DS patients is not affected by the GATA1 mutation type

(A) GATA1s expression was analysed in 36 TMD patients with different classifications of GATA1 mutation. PTC 1–3’ n = 10, Splice n = 7, PTC 1–5’ n = 15 and Unknown n = 4. (B) GATA1s expression was analysed in 20 ML-DS patients with different classifications of GATA1 mutation. PTC 1–3’ n = 3, Splice n = 1, PTC 1–5’ n = 14 and Unknown n = 2. No significant differences were found in the expression of GATA1s between the different types of mutation. Filled circles represent each patient and the black bar is mean GATA1s expression.
REFERENCES
