VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue

Gustaf Christoffersson, Evelina Vågesjö, Jennifer Vandooren, Majken Lidén, Sara Massena, Rachel B. Reinert, Marcela Brissova, Alvin C. Powers, Ghislain Opdenakker, Mia Phillipson

Supplemental Data

Figures S1-S4
Transplanted PE-sphere in cremaster Site distant from transplanted PE-sphere

Transplanted sterile material does not induce recruitment of leukocytes in muscle. Highly fluorescent polyethylene spheres in the size of pancreatic islets (diameter 125-150 µm) were transplanted into the cremaster muscles of mice in the same fashion as islets. After 3-5 days, cremaster muscles were exposed, and leukocyte recruitment assessed by in vivo confocal microscopy. No specific recruitment of Gr-1-positive leukocytes could be observed by the spheres (n=6). Extravasated leukocytes were however found in the muscle, but this recruitment is most probably unspecific, and a consequence of the surgical trauma caused by the insertion method.

In the left panel above, two highly fluorescent PE-spheres (fluoresces in both blue and red) in cremaster muscle four days after transplantation are shown in a confocal z-projection, and some extravasated leukocytes are visible (green). In the right panel, a site distant from the transplanted spheres is shown, where approximately the same degree of leukocyte extravasation can be seen. Bars are 50 µm.
Pancreatic islets increase their expression of VEGF-A after isolation

Mouse pancreatic islets were isolated and kept free-floating at 37°C in culture dishes. The expression of VEGF-A mRNA and VEGF-A protein was measured on the day of isolation, and after 1 and 4 days in culture. Pancreatic islets have high basal expression of VEGF-A (seen on day 0), and levels increase after 1 day in culture, probably due to tissue hypoxia. After 4 days in culture, the levels are back to where they were after isolation, either due to negative feedback mechanisms from accumulated protein in the media, or due to attained homeostasis. *$P<0.05$ compared to day 0, n=3 mice/time point.
Expression of CXCR4 is not inducible *in vitro*

To investigate whether the stimuli used to recruit leukocytes could cause a change in surface expression of CXCR4, *in vitro* stimulation experiments were performed.

(A) Blood was collected from mice by heart puncture. After red blood cell lysis, leukocytes were incubated with either MIP-2 or VEGF-A for 30 min. Flow cytometry was then performed, by which the level of CXCR4 expression was measured in the CD11b⁺/Gr-1⁺ population. The diagram shows levels related to the expression of CXCR4 in the group incubated with only cell medium. There is no significant difference between the groups. n=6 mice.

(B) Leukocytes were recruited into the peritoneal cavity of mice by either MIP-2 or VEGF-A. The leukocytes were then incubated with MIP-2, VEGF-A, or only cell medium for 30 min in a criss-cross fashion. Flow cytometry was then performed where the level of CXCR4 expression was measured in the CD11b⁺/Gr-1⁺ population. The diagram shows levels related to the expression of CXCR4 in the group incubated with only cell medium. There is no significant difference between the groups. n=5-6 mice/group.
Leukocytes recruited to VEGF-A contain more MMP-9 than leukocytes recruited to MIP-2

Leukocytes were recruited into the peritoneal cavity of mice by either MIP-2 or VEGF-A. The cells were then counted and diluted in two different concentrations (2×10⁴ and 4×10⁴ leukocytes/ml) and stimulated with PMA. Supernatants were collected and analyzed for MMP-9 content by gelatin zymography. The figure displays four representative unedited gels from these experiments.