Supplemental Information for

Social networking of human neutrophils within the immune system
Patrizia Scapini & Marco A. Cassatella

- REFERENCES to Table 1.
- REFERENCES to Table 2.
- Supplemental Table 1. Crosstalk between mouse neutrophils and innate immune cells.
- Supplemental Table 2. Crosstalk between mouse neutrophils and adaptive immune cells.
REFERENCES to Table 1 (Crosstalk between human neutrophils and innate immune cells)

REFERENCES to Table 2 (Crosstalk between human neutrophils and adaptive immune cells)

Supplemental Table 1. Crosstalk between mouse neutrophils and innate immune cells

<table>
<thead>
<tr>
<th>neutrophil crosstalk with:</th>
<th>crosstalk outcome</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendritic cells (DCs): conventional DCs (cDCs)</td>
<td>enhancement, by microbial antigen-stimulated neutrophils, of cDC recruitment, activation and ability to simulate Th1 cell differentiation, via cytokine production or cell-contact dependent mechanisms</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>enhancement of cDC ability to present antigens by Mycobacteria-infected neutrophils</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>inhibition of cDC-mediated antigen presentation by neutrophils in models of immunization with T-cell-dependent antigens</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>cDC internalization and cross-presentation of antigens previously processed by neutrophils</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>enhancement of cDC activation by Aspergillus fumigatus-activated neutrophils via DC-SIGN-dependent mechanisms</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>enhancement of cDC-mediated immunostimulatory functions by NETs containing myeloperoxidase (MPO), elastase, and proteinase 3 (PR3)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>modulation of reciprocal neutrophil and DC recruitment, under inflammatory conditions</td>
<td>reviewed in ref.10-11</td>
</tr>
<tr>
<td></td>
<td>inhibition of cDC activation and cDC-mediated T cell activation by apoptotic neutrophils infected with Leishmania major or Mycobacteria</td>
<td>12-13</td>
</tr>
<tr>
<td></td>
<td>enhancement of neutrophil recruitment and neutrophil-derived IL-10 by Mycobacteria-infected cDCs, with consequent neutrophil-mediated inhibition of Th17 cell activation</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>inhibition of cDC maturation and cytokine production by neutrophil-derived MPO</td>
<td>15</td>
</tr>
<tr>
<td>plasmacytoid DCs (pDCs)</td>
<td>modulation of neutrophil trafficking from the bone marrow into the circulation by cDCs</td>
<td>16</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>enhancement of pDC-derived IFNα by NETs containing the antimicrobial peptide (CRAMP) complexed with self DNA and DNA-specific IgG produced by CD5^+^ B1a cells.</td>
<td>17</td>
</tr>
<tr>
<td>Macrophages</td>
<td>enhancement of macrophage-mediated microbicidal activities and macrophage-derived cytokines by neutrophil granule proteins</td>
<td>reviewed in ref. 18</td>
</tr>
<tr>
<td></td>
<td>inhibition of proinflammatory cytokine production by macrophages engulfing apoptotic neutrophils</td>
<td>reviewed in ref.19</td>
</tr>
<tr>
<td></td>
<td>enhancement of macrophage antimicrobial activities by the uptake of antimicrobial peptides from ingested apoptotic and non-apoptotic neutrophils</td>
<td>reviewed in ref.20</td>
</tr>
<tr>
<td>natural killer (NK) cells</td>
<td>enhancement, by neutrophil-derived IL-18 in combination with DC-derived IL-12, of IFNγ production by NK cells in mice infected with Legionella pneumophila</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>neutrophils and NK cells modulate each other functions in different mouse models of infections and inflammation</td>
<td>reviewed in ref.22</td>
</tr>
<tr>
<td></td>
<td>impairment of NK cell maturation and functions in neutropenic mice</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>inhibition of neutrophil pro-inflammatory functions by NK cells, via contact-dependent mechanisms involving NK cell-inhibitory receptor NKG2A</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>enhancement of neutrophil fungicidal activity by NK cell-derived GM-CSF</td>
<td>25</td>
</tr>
<tr>
<td>mast cells</td>
<td>enhancement of neutrophil effector functions via mast cell-derived TNFα and GM-CSF</td>
<td>26</td>
</tr>
</tbody>
</table>

REFERENCES

Supplemental Table 2. Crosstalk between mouse neutrophils and adaptive immune cells

<table>
<thead>
<tr>
<th>neutrophil crosstalk with:</th>
<th>crosstalk outcome</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cells: CD4⁺ and/or CD8⁺ T cells</td>
<td>modulation of T helper type 1 (Th1) cell differentiation by neutrophils in experimental models of infections</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>enhancement of Th2 polarization by neutrophils in BALB/c mice infected with Leishmania major</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>enhancement of CD8⁺ T-cell responses, as well as antigen cross-presentation, in vitro and in vivo, by neutrophils</td>
<td>5-7</td>
</tr>
<tr>
<td></td>
<td>enhancement of CD4⁺ T cell activation and Th1/Th17 polarization by neutrophils expressing MHC class II, CD80 and CD86</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>inhibition of T cell responses and T cell colonization to distal lymph nodes by neutrophils, in models of immunization with T-cell-dependent antigens</td>
<td>10-11</td>
</tr>
<tr>
<td></td>
<td>enhancement of CD8⁺ T cell-mediated anti-viral responses by neutrophils</td>
<td>12-14</td>
</tr>
<tr>
<td></td>
<td>enhancement of CD8⁺ T cell recruitment into the skin and CD8⁺ T cell-mediated immune responses by neutrophil-derived Fas ligand and perforin</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>enhancement of T cell proliferation and T cell-derived cytokines by neutrophils acquiring antigen-presenting functions in mice with chronic colitis</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>inhibition of myeloid-derived suppressor cell (MDSC)-mediated suppressive functions by a neutrophil cell population constitutively producing IFN-γ in mice with chronic inflammation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>reviewed in ref. 18-19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inhibition of CD4⁺ and CD8⁺ T cell activation and proliferation by granulocytic (G)-MDSCs from tumor-bearing mice, mainly via arginase-1 and ROS overproduction</td>
<td>reviewed in ref. 20-21</td>
</tr>
<tr>
<td></td>
<td>T cell and neutrophil reciprocal influence their effector functions under co-culture conditions, either via chemokine and cytokine production or contact-dependent mechanisms</td>
<td></td>
</tr>
</tbody>
</table>

10
γδ T cells	enhancement of IL-17A production by γδ T cells in neutropenic mice during Cryptococcus neoformans infections	22
—	modulation of neutrophil influx by γδ T cells in different models of infections and epithelial wound healing	reviewed in ref. 20
—	enhancement of iNKT-derived IFNγ by neutrophils in a model of renal ischemia-reperfusion injury	23
—	modulation of neutrophilic inflammation by activated iNKT cells	24-26
—	suppression of neutrophil inflammatory responses by iNKT cells in a model of cholestatic liver damage.	27
—	inhibition of iNKT-derived IFNγ and iNKT cytotoxicity by neutrophils, via contact-dependent mechanisms	28
B cells:	inhibition of antibody production by neutrophils in models of immunization with T-cell-dependent antigens	10
B cells	enhancement of NET formation and neutrophil release of CRAMP by IgG-production derived from CD5+ B1-a cells	29
CD5+ B1-a cells	enhancement of CD5+ B1a cell activation and proliferation by splenic neutrophils, via BAFF, IL-21 and NET production	30

REFERENCES

