Thrombospondin 1 requires von Willebrand factor to modulate arterial thrombosis in mice

Prem Prakash, Paresh P. Kulkarni and Anil K. Chauhan
Department of Internal Medicine, University of Iowa, Iowa City, IA

Supplementary methods

Platelet preparation

Blood was isolated from anesthetized mice and diluted with tri sodium citrate (1.9% w/v) in 1:9 ratio. Platelet-rich-plasma (PRP) was obtained by centrifugation at 100x g for 5 min. The PRP and buffy coat containing some RBCs were gently transferred to fresh polypropylene tubes and re-centrifuged at 100x g for 5 min. PRP was incubated with prostaglandin I₂ (PGI₂, 20 ng/mL) at 37°C for 5 minutes. PRP was further centrifuged at 600x g for 5 min and obtained pellets were resuspended in 1 mL modified Tyrode-HEPES buffer (137 mM NaCl, 0.3 mM Na₂HPO₄, 2 mM KCl, 12 mM NaHCO₃, 5 mM HEPES, 5 mM glucose, 0.35% BSA, pH 7.2) containing PGI₂ (20 ng/mL) for 5 minutes at 37°C. Platelets were washed twice and finally resuspended in modified Tyrode-HEPES buffer. For intravital microscopy experiments platelets were differentially either fluorescently labeled with calcein green, AM or calcein red-orange, AM at a concentration of 2.5 µg/mL (Molecular Probes, Eugene, OR) for 10 min at room temperature.

Flow cytometry

15 µl of washed platelets (3-4 X 10⁸) diluted 1:10 in modified Tyrode’s buffer (supplemented with 1mM Ca²⁺, 5mM glucose and 0.35% bovine serum albumin) were incubated with either antibody against GPIbα (5 µl of PE-anti-CD42b; Emfret) or those against integrin αIIbβ3 in
active conformation (5 µl of PE-JON/A; Emfret) and P-selectin (5 µl of FITC-anti-CD62P; Emfret) for 15 minutes in the dark at 37°C. The reaction was quenched by adding 250 µl of buffer (FACSSheath; BD Biosciences) and analyzed using flow cytometer (FACSCalibur; BD Biosciences). 10000 events were acquired in platelet gate for each sample.

Platelet Aggregation

Platelets rich plasma and washed platelets were prepared as described above. The final platelet count was adjusted to 3-4 x 10^8/ml with platelet-poor plasma or Tyrode’s buffer. Aggregation was initiated by adding agonists in 250 µl of platelet suspension and recorded in light transmittance aggregometer (Chrono-Log Corporation).
Supplementary Figures

Figure S1

Flow cytometric analysis of Tsp1−/− and WT platelets. (A) The upper left panel shows representative histogram overlay for GPIbα expression detected using PE-labeled anti-CD42b antibody. The lower panel shows quantitative data represented as mean fluorescence intensity (n = 6). (B) The upper middle and right panels respectively show histogram overlays for P-selectin exposure (FITC-CD62P antibody) and integrin activation (PE-JON/A antibody) in Tsp1−/− and WT platelets with or without thrombin (0.1 U/ml) stimulation. The lower panels show corresponding quantitative data represented as mean fluorescence intensity (n = 6). Data is presented as mean ± SEM.
Aggregation assays of $Tsp1^{-/-}$ and WT platelets. Representative tracings and corresponding bar diagrams showing aggregation responses induced by (A) Thrombin 0.1 U/ml in washed platelets (n=6) (B) ADP 2µM in platelet-rich plasma (n=5) or (C) Collagen 5µg/ml in platelet-rich plasma (n=4). Data is presented as mean ± SEM.
Hematopoietic cell-derived TSP1 modulates arterial thrombosis. (A) Genomic DNA PCR analysis for the Tsp1 gene in peripheral blood mononuclear cells from transplanted Tsp1−/−BM→ WT mice and WT-BM→ WT mice. (B) Quantification of first thrombus (>20 µm). (C) Thrombus growth kinetics (fold increase). *P<0.05; WT-BM in WT mice vs. Tsp1−/−-BM in WT mice. (D) Mean time to complete occlusion. Data represent mean ± SEM. N=8 mice/group.