SUPPLEMENTAL FIGURES LEGENDS

S1: CD9 downregulation does not affect REH cell proliferation in vitro

(A) REH CD9high, CD9medium and CD9low, (B) REH RAC1high, RAC1low n°1 and n°2 cells were used to seed complete medium in 12-well plates. Cell density was determined on days 0,1,2,3,4,7,8 and 9.

S2: Bone marrow content at death, after xenografting, in NOD/SCID mice

REH cells were cultured and injected intravenously (105 cells) into four-week-old NSG mice. The general condition of the mice was monitored daily until their death. At death, BM cells were harvested and red blood cells were lysed. The resulting cell suspension was then labeled with anti-CD19 and anti-CD10 antibodies and analyzed by flow cytometry. The result shown is representative of three independent experiments.

S3: CD9 and CXCR4 are colocalized at NALM6 cells cytoplasmic membrane

Cells were subjected to cytopsin centrifugation and fixed in 4\% paraformaldehyde (PFA). The CXCR4, CXCR7 and CD9 proteins were labeled with mouse anti-CD9 (1:50), rabbit anti-CXCR4 (1:50) and rabbit anti-CXCR7 (1:500) antibodies. Confocal imaging of serial Z stacks was performed with a Leica SP5 confocal microscope equipped with a 63x/1.4 oil immersion objective and x6 zoom. The yellow spots on the merged images indicate the colocalization of CXCR4 and CD9. The images are representative of three independent experiments.
S4: CD9 enhances actin polymerization in response to CXCL12

Cells were stimulated with CXCL12 (200 ng/ml) in RPMI for the times indicated. The cells were then fixed in 4% paraformaldehyde for 5 minutes, before permeabilization and labeling with 0.1% Triton X-100 supplemented with Alexa Fluor 488-phalloidin (1:1000) for 10 minutes. The fluorescence of actin was measured by flow cytometry. Results are expressed as a ratio of the MFI of cells after ts of stimulation to that at t0. The graph shows the mean values of three independent experiments. *p<0.05 in two-way ANOVA.

S5: CXCL12 is expressed in testis tissue

CXCL12 mRNA levels, as analysed by RT-PCR, in mouse bone marrow (BM), spleen (S) and testis (T) samples.

S6: NALM6 cell migration in response to CXCL12 in vitro is dependent on CD9 and RAC1

(A) The expression of CD9 and CXCR4 was analyzed by flow cytometry. (B) NALM6 cells that had been incubated with plerixafor (20μM), NSC23766 (25 μM), anti-CD9 blocking antibody or IgG isotype control (1 μg/ml), were allowed to migrate in a Boyden chamber in response to CXCL12 (100 ng/ml). The migration rates are presented using a scatter dot plot where the histograms indicate the means of six independent experiments. *p<0.05 in Wilcoxon test.
Bone marrow content

IgG

CD10/CD19 labelling

- **CD10**
- **CD19**
<table>
<thead>
<tr>
<th>NALM6</th>
<th>CD9</th>
<th>CXCR4</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD9</th>
<th>CXCR7</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 µm