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SUPPLEMENTAL METHODS 
Automated clustering. We used FlowSOM 17 for automated clustering. Briefly, it works 

following a four-step approach: 1) reading data; 2) building a self-organizing map (SOM) 

for clustering and dimensionality reduction; 3) building a minimum spanning tree 

connecting nodes according to their similarity; 4) computing an automated meta-

clustering by grouping similar nodes. The meta-clustering step is critical for the definition 

of cell populations. In this phase, groups of similar nodes are “fused” to obtain more 

consistent populations following specific algorithms. We used the ConsensusClusterPlus 

package separated from FlowSOM to obtain better control of each function. At this stage 

it is possible to decide the final number of clusters in which cells are being divided.  

 

Cytospin. A total of 1x106 cells from various neutrophil subsets were sorted in PBS. 

Afterwards, cells were attached to slides by cytocentrifugation (Thermo Fisher Scientific, 

Waltham, MA). Slides were stained following the May-Grünwald/Giemsa method and 

evaluated in an optical microscope (CX-21; Olympus, Tokyo, Japan). Images are shown 

with a 400x magnification. 

 
T cell proliferation. The impact in T cell proliferation of various neutrophil subsets was 

evaluated through FACSorting of each neutrophil subset and autologous T cells from 

bone marrow (BM) samples of multiple myeloma (MM) patients (N = 10) and healthy 

adults (HA) (N = 4). T cells were labelled with Violet Proliferation Dye (VPD) 450 (BD 

HorizonTM) according to the manufacturer’s protocol. Afterwards, 0.4x105 T cells were 

seeded per well in a 96-well U bottom plate previously coated with an anti-CD3 

monoclonal antibody 2.5 µg/mL (overnight at 4ºC, eBioscienceTM San Diego, CA). This 

process was repeated for each neutrophil subsets, which were cultured with T cells in an 

E:T ratio of 1:1 in RPMI1640 medium (10% FBS, 1% L-Glu, 1% Penicillin-Streptomycin) 

and in presence of 1.2 µg/mL of an anti-CD28 monoclonal antibody (eBioscienceTM San 

Diego, CA, USA). After a 4-day incubation at 37ºC, cells were labelled with CD45-

OC515, CD15-FITC, CD8-PE, 7AAD-PerCP-Cy5.5, CD4-PE-Cy7 and CD3-APCH7. 

Data acquisition was performed in a FACSCantoII flow cytometer and T cell proliferation 

was analyzed using the Infinicyt software, based on the diffusion of VPD to daughter 

cells.   

 

T cell immunosuppression. We established unique culture conditions to evaluate the 

immunosuppressive potential of various neutrophil subsets after depleting a single 

subset in each condition (N = 10). 0.25x106 cells per condition were seeded in a 96-well 

plate and cultured in presence or absence of 30 nM of a BCMAxCD3 bispecific antibody 
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in RPMI1640 medium (10% FBS, 1% L-Glu, 1% Penicillin-Streptomycin). After overnight 

incubation at 37ºC, cells were labelled with CD11b-BV421, CD45-KromeOrange, CD38-

FITC, CD229-PE, CD16-PerCP-Cy5.5, CD56-PE-Cy7, Annexin-V-APC and CD138-

APCH7. MM cell death was determined according to the percentage of Annexin-V+ cells 

measured in a FACSCantoII flow cytometer. Data analysis was performed using the 

Infinicyt software.  

 
RNA sequencing (RNAseq). Various neutrophil subsets were isolated from total BM 

samples of HA (N = 8) and MM patients (N = 8) in a FACSAriaII. Bulk RNAseq was 

obtained using a protocol adapted from single-cell massively parallel single-cell RNA-

sequencing 18, which enabled preparing libraries with as few as 20,000 cells as starting 

material. Briefly, we barcoded RNA from each sample in a retrotranscription (RT) 

reaction with AffinityScript Multiple Temperature Reverse Transcriptase (Agilent, Santa 

Clara, CA) and different RT primers. After qPCR, cDNA with similar Ct values were 

pooled together. cDNA was purified with SPRIselect 1.2X (Beckman Coulter –BC-, Brea, 

CA) and amplified using the T7 promotor as template previously introduced in the RT 

reaction. T7 polimerase (NEB) was added for 16 hours at 37ºC. RNA molecules were 

fragmented with 2µL of 10X Zn2+ fragmentation buffer (Ambion™, ThermoFisher) for 1 

min at 70ºC and purified with SPRIselect 2X. Afterwards, a ssRNA adaptor (Illumina, 

San Diego, CA) was ligated to the 3’-end of the RNA fragments in presence of DMSO, 

100 mM ATP, 50% PEG and T4 RNA ligase I (NEB) for 2 hours at 22ºC. A second RT 

reaction was performed with AffinityScript Multiple Temperature Reverse Transcriptase 

and resulting cDNA was purified with SPRIselect 1.5X. Finally, cDNA was amplified with 

12.5µL Kappa Hifi ready mix + 1µL 25 µM primer mix per sample and purified with 

SPRIselect 0.7X. Qubit, TapeStation and qPCR analysis were done as quality controls 

and 4 nM of the final library were sequenced in a NextSeq (Illumina). 

Differential gene expression across all pairwise comparisons between groups 

was analyzed with Deseq2 R package followed by k-means clustering of genes in R. A 

one-way ANOVA with multiple comparisons was used to determine the significance of 

differential gene expression across each neutrophil subset, between neutrophils derived 

from HA and MM patients, between neutrophils derived from peripheral blood or bone 

marrow and before and after treatment with hypomethylating agents. Genes with a 

P<0.05 were used for gene ontology analysis and gene set enrichment analysis using 

the clusterprofiler and fgsea R packages, respectively. 

 
Treatment with TGF-β. We exposed whole PB from HA (N = 3) to 1ng/mL of TGF-β for 

48 hours. After incubation at 37ºC, cells were labelled with SYTOX™ Blue (Thermo 
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Fisher Scientific, MA, USA), CD15-FITC, CD13-PE, CD45-PerCP-Cy5.5, CD16-PE-Cy7 

and CD11b-APC and mature neutrophils were stored in Lysis/Binding Buffer 

(Invitrogen™, CA, USA) for RNAseq using the protocols described above. 

 

Assay for Transposase Accessible Chromatin with high-throughput sequencing 
(ATACseq). Approximately 20,000 cells of various neutrophils subsets were FACSorted 

from total BM samples of HA (N = 3) or MM patients (N = 3), and placed in a PCR tube 

with 100µL of PBS+BSA 0.05%. After centrifugation (500g, 4ºC, 10 min), the pellet was 

suspended in 25µL of the transposase reaction mixture (15µL of Buffer TD2x (Illumina), 

1µL of TDE1 enzyme (Illumina), 0.25µL of 5% digitonin (Promega) and 8.75µL of 

nuclease-free water). The resulting mix was incubated at 37ºC for 30 min at 450 rpm. 

Afterwards, the transposase reaction was stopped on ice and 5µL of clean up buffer, 2µL 

of 5% SDS and 2µL of Proteinase K (New England Biolabs) were added to the previous 

mix and incubated for 30 min at 40ºC. Transposase-reaction products were cleaned up 

with AMPure magnetic beads 2X (BC). Finally, the DNA fragments were amplified with 

22µL Kappa Hifi ready mix + 4µL of primer 1 i5 and 2 i7 mix per sample. Library was 

purified with AMPure magnetic beads 2X. Quality control was performed with Qubit and 

TapeStation, and 4 nM of the final library were sequenced in a NextSeq. 

 ATACseq reads were aligned to the hg19 genome build using bowtie2 with 

default parameters (except commands adapted for these specific data such as --very-

sensitive and --non-deterministic options that improve accuracy and results when there 

are many identical reads) and filtered based on mapping score (MAPQ ≥ 30) by Samtools 

version 1.3.159. The MACS2 version 2.1.0 was used to identify peaks for each sample 

with default settings. ChiPQC package was used for quality control and blacklisted peaks 

removal. ChipSeeker was used to assess overlap of differential peaks and relate peaks 

to annotated transcription start sites using default options. DESeq2 was used to 

normalize and identify differential peaks across treatment conditions with p-value <0.05. 

Clusterprofiler R package was used to perform a gene ontology analysis. 

 

Epigenetic targeting. We treated whole BM samples from MM patients (N = 3) with a 

selective and reversible inhibitor of histone methyltransferase G9a and DNA-

methyltransferase 24 (CM-272), testing two different drug concentrations (250 and 500 

nM). Approximately 3x106 cells were seeded per well in a 24-well plate and left in culture 

for 48 hours. Cells were treated at time 0 and +24 hours. After incubation at 37ºC, cells 

were labelled with SYTOX™ Blue (Thermo Fisher Scientific, MA, USA), CD15-FITC, 

CD13-PE, CD45-PerCP-Cy5.5, CD16-PE-Cy7 and CD11b-APC to evaluate the 

distribution of neutrophil subsets after drug exposure. We also investigated a possible 
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synergic effect between CM-272 and a BCMAxCD3 bispecific antibody in two functional 

assays. First, we analyzed the immunosuppressive potential of various neutrophils 

subsets present in BM samples of MM patients (N = 5) after depleting a single subset 

with FACS. A total of 0.25x106 cells per condition were seeded in a 96-well plate and 

pre-incubated for 2-hours with CM-272 (10nM) at 37ºC. After washing to remove the 

compound, 0.5x105 H929 MM cells were added to the culture followed by incubation with 

a BCMAxCD3 bispecific antibody (30nM) for 24-hours at 37ºC in RPMI1640 medium 

(10% FBS, 1% L-Glu, 1% Penicillin-Streptomycin). Secondly, we analyzed the cytotoxic 

effect of T cells in the presence of each neutrophil subset, sorted from BM samples of 

MM patients (N = 5). A total of 0.5x105 cells were seeded in a 96-well plate. Neutrophils 

were preincubated for 2-hours with CM-272 (10nM) at 37ºC. After washing to remove 

the compound, 0.5x105 H929 MM cells and 0.5x105 T cells were added to the culture and 

incubated with a BCMAxCD3 bispecific antibody (30nM) for 24-hours at 37ºC in 

RPMI1640 medium. Cells were labelled with CD11b-BV421, CD45-KromeOrange, 

CD38-FITC, CD229-PE, CD16-PerCP-Cy5.5, CD56-PE-Cy7, Annexin-V-APC and 

CD138-APCH7. MM cell death was determined according to the percentage of Annexin-

V+ H929 cells measured in a FACSCantoII flow cytometer. Data analysis was performed 

using the Infinicyt software.  
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Supplemental Table 1. KEGG cytokine-cytokine receptor interaction pathway list. 
 

AC005840.1 CCR6 EPO IL12RB1 IL7R TNFRSF11B 
ACVR1 CCR7 EPOR IL12RB2 IL8 TNFRSF12A 

ACVR1B CCR8 FAS IL13 IL9 TNFRSF13B 
ACVR2A CCR9 FASLG IL13RA1 IL9R TNFRSF13C 
ACVR2B CD27 FLT1 IL15 INHBA TNFRSF14 
ACVRL1 CD40 FLT3 IL15RA INHBB TNFRSF17 

AMH CD40LG FLT3LG IL17A INHBC TNFRSF18 
AMHR2 CD70 FLT4 IL17B INHBE TNFRSF19 
BMP2 CLCF1 GDF5 IL17RA KDR TNFRSF1A 
BMP7 CNTF GH1 IL17RB KIT TNFRSF1B 

BMPR1A CNTFR GH2 IL18 KITLG TNFRSF21 
BMPR1B CRLF2 GHR IL18R1 LEP TNFRSF25 
BMPR2 CSF1 HGF IL18RAP LEPR TNFRSF4 
CCL1 CSF1R IFNA1 IL19 LIF TNFRSF6B 

CCL11 CSF2 IFNA10 IL1A LIFR TNFRSF8 
CCL13 CSF2RA IFNA13 IL1B LTA TNFRSF9 
CCL14 CSF2RB IFNA14 IL1R1 LTB TNFSF10 
CCL15 CSF3 IFNA16 IL1R2 MET TNFSF11 
CCL16 CSF3R IFNA17 IL1RAP MPL TNFSF12 
CCL17 CTF1 IFNA2 IL2 NGFR TNFSF13 
CCL18 CX3CL1 IFNA21 IL20 OSM TNFSF13B 
CCL19 CX3CR1 IFNA4 IL20RA OSMR TNFSF14 
CCL2 CXCL1 IFNA5 IL20RB PDGFA TNFSF15 

CCL20 CXCL10 IFNA6 IL21 PDGFB TNFSF18 
CCL21 CXCL11 IFNA7 IL21R PDGFC TNFSF4 
CCL22 CXCL12 IFNA8 IL22 PDGFRA TNFSF8 
CCL23 CXCL13 IFNAR1 IL22RA1 PDGFRB TNFSF9 
CCL24 CXCL14 IFNAR2 IL22RA2 PF4 TPO 
CCL25 CXCL16 IFNB1 IL23A PF4V1 TSLP 
CCL26 CXCL2 IFNE IL23R PLEKHO2 VEGFA 
CCL27 CXCL3 IFNG IL24 PPBP VEGFB 
CCL28 CXCL5 IFNGR1 IL25 PPBPP1 VEGFC 
CCL3 CXCL6 IFNGR2 IL26 PRL VEGFD 

CCL3L1 CXCL8 IFNK IL2RA PRLR XCL1 
CCL3L3 CXCL9 IFNL1 IL2RB RELT XCL2 

CCL4 CXCR1 IFNL2 IL2RG TGFB1 XCR1 
CCL4L2 CXCR2 IFNL3 IL3 TGFB2 HIF1A 

CCL5 CXCR3 IFNLR1 IL3RA TGFB3 CEBPB 
CCL7 CXCR4 IFNW1 IL4 TGFBR1 STAT1 
CCL8 CXCR5 IL10 IL4R TGFBR2 STAT3 
CCR1 CXCR6 IL10RA IL5 TNF NOS2 

CCR10 EDA IL10RB IL5RA TNFRSF10A ARG1 
CCR2 EDA2R IL11 IL6 TNFRSF10B PTGS2 
CCR3 EDAR IL11RA IL6R TNFRSF10C PTGES2 
CCR4 EGF IL12A IL6ST TNFRSF10D S100A8 
CCR5 EGFR IL12B IL7 TNFRSF11A S100A9 
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Supplemental Figure 1. Semi-automated pipeline that performs batch-analyses of flow 

cytometry data to avoid variability intrinsic to manual analysis, and unveils full cellular 

diversity based on unbiased clustering. This strategy allowed the systematic 

identification and quantification of a variable number of cell clusters, which grouped 

according to the similarity of antigen expression profiles by using the bioinformatic 

algorithm FlowSOM. 
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Supplemental Figure 2. Characterization of G-MDSCs based on conventional 
criteria. Flow cytometry analysis using the conventional gating strategy for G-MDSCs 

based on the expression of CD11b, CD14, CD15, CD33 and HLADR antigens. 

CD11b+CD14-CD15+CD33+HLADR- cells included a mixture of immature and mature 

neutrophil subsets plus eosinophils. 
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Supplemental Figure 3. Phenotypic and transcriptional profile of mature neutrophils 

present in matched BM and PB samples from MM patients. (A) Flow cytometry analysis 

of neutrophils from paired samples of BM and PB (N = 5) show no differences in the 

immunophenotype of BM and PB neutrophils. Boxes represent the mean and lines the 

standard deviation (from five independent experiments. (B) Principal component analysis 

of BM and PB neutrophils show that circulating mature neutrophils overlap with BM 

mature neutrophils. Lines represent the standard deviation and dots the median values. 

(C) Transcriptomic signature of mature BM and PB neutrophils show that circulating 

neutrophils from MM patients cluster with patient-matched BM neutrophils rather than 

with mature neutrophils from HA. 
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Supplemental Figure 4. Daratumumab has no long-term in vitro effect on BM 
granulocytes from MM patients. (A) BM samples from MM patients (N = 3) were 

cultured in an organoid 3D model to enable long-term treatment. (B) After 10-day 

treatment, daratumumab induced a significant depletion of tumor plasma cells. (C) No 

significant differences in the percentage of CD11b+CD14-CD15+CD33+HLADR- cells. 

Bar graphs represent the mean and lines the standard deviation. The statistical 

significance was evaluated using the t-Student test. (D) or any other granulocytic subsets 

before and after treatment. (E) Flow cytometry analysis of BM samples from MM patients 

(N = 36) before and after treatment with daratumumab show no significant differences in 

each granulocytic subset.  
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Supplemental Figure 5. (A) Correlations between granulocytic subsets and other BM 

populations (nucleated red blood cells –NRBCs-, T cells and tumor cells) with clinical 

parameters. (B) Progression-free survival according to high vs low abundance of 

intermediate and immature neutrophils, eosinophils and basophils). Boxes represent the 

mean and lines the standard deviation. 
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Supplemental Figure 6. (A and B) Graphical representation of 21 genes from the KEGG 

cytokine-cytokine receptor interaction pathway list, which displayed significantly different 

expression levels in immature, intermediate and mature neutrophils from healthy adults 

(N = 8) and multiple myeloma (MM) patients (N = 8). Patterns of gene expression were 

similar in HA and MM patients with the exception of a significant and progressive 

upregulation of VEGFA and TGFB1 and a lack of increase of CXCL1 in MM neutrophils. 

(C) All genes with significant differences in expression levels found in mature neutrophils 

from HA and MM patients. 
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Supplemental Figure 7. Molecular characterization of neutrophil differentiation in 
the BM of HA and MM patients. Unsupervised clustering of RNAseq data showed 

incomplete segregation between HA and MM regarding the transcriptional profile of (A) 
immature and (B) intermediate neutrophils. 

 
  



Defining G-MDSCs in the MM tumor microenvironment 

21 
 

Supplemental Figure 8. Genes coding for cytokines/chemokines with significantly 

different expression in mesenchymal stromal cells from bone marrow aspirates of healthy 

adults (HA, N = 8) and multiple myeloma (MM) patients (N = 56). No differences were 

noted in TGF-β expression. 
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Supplemental Figure 9. The transcriptional network of mature neutrophils is 
epigenetically deregulated in MM. (A) Differential open chromatin sites (peaks) were 

annotated to the nearest gene based on their distance to transcription start sites (TSS). 

50% of these peaks were in potential promoter regions within 3 kb of a TSS, suggesting 

that these gains/losses in accessibility could exert regulatory activity. (B) Significant 

correlation between gains or losses of chromatin accessibility near TSS and gene 

expression for each normal and tumor derived neutrophil samples based on paired 

ATACseq and RNAseq data. (C) CD83 showed significantly higher mRNA expression in 

MM vs HA as well as concordant transcriptional and chromatin accessibility data. Flow 

cytometry data show increased protein expression in MM in accordance to molecular 

data. Boxes represent the mean and lines the standard deviation (from three 

independent experiments). 
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Supplemental Figure 10. Mode of action of CM-272 was confirmed by validating the 

induced expression of several type I IFN related genes described below. 
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Supplemental Figure 11. Combination of CM-272 and a BCMAxCD3 bispecific antibody 

show that CM-272 is able to abrogate the immunosuppressive activity exerted by mature 

neutrophils. The combination significantly increased the activity of T cells against H929 

MM cells when compared to single-agent BCMAxCD3 bispecific antibody (P ≤ .01). Bar 

graphs represent the mean and lines the standard deviation (from five independent 

experiments).  

 
 
 


